
Doug Tidwell
Cloud Computing Evangelist, IBM
dtidwell@us.ibm.com

Session 7663

Writing Java Applications
for the Cloud

Agenda

• A brief overview of cloud computing and REST
• Cloud use cases and developer requirements
• Apache Wink
• The Simple Cloud API
• Controlling VMs with Apache libcloud
• Resources / Next steps

A very few words about the cloud
And REST and WS-*

The cloud

• Cloud computing . . . is a style of computing where IT-related
capabilities are provided ‘as a service,’ allowing users to access
technology-enabled services ‘in the cloud’ without knowledge of, without knowledge of,
expertise with or control over the technologyexpertise with or control over the technology infrastructure that
supports them.
• From Wikipedia

• Everybody has a slightly different idea of what cloud computing really
is.
• This definition has been edited 350+ times in 2009.

REpresentational State Transfer

• Again, from Wikipedia:
• Application state and functionality are resources
• Every resource can be accessed via a URI
• Simple interface: POST, GET, PUT, DELETE (think create, read,

update, delete)
• Cacheable, stateless protocol

• Clearly defined in Roy Fielding’s seminal Ph.D. dissertation
• Everybody has a slightly different idea about what REST really is.

• The definition above has been edited 5,000+ times since I started
reading this slide.

WS-*

• We’ll refer to WS-* as SOAP, WSDL and standards such
as WS-Security, WS-ReliableMessaging,
WS-Conversation, etc.
• Proponents of REST often call this “Big Web Services.”

• This means packaging data in a SOAP envelope, using
WSDL to determine the service’s interface and endpoint,
and using the WS-* standards to add headers to the SOAP
envelope as needed.

A plea for sanity

• It’s easy to find avid proponents of REST or WS-* out
there.
• You can find borderline psychotic proponents, too!

• As always, the sane answer is to examine the two the sane answer is to examine the two
technologies and figure out which meets your needs.technologies and figure out which meets your needs.
• Maybe it’s both.
• David Chappell’s blog post “REST vs. WS-*: War is Over (If

You Want It)” is a good read. As are the responses.

Cloud use cases and
developer requirements

• There are seven ways customers are using the cloud:
1. End User to Cloud
2. Enterprise to Cloud to End User
3. Enterprise to Cloud
4. Enterprise to Cloud to Enterprise
5. Private Cloud
6. Changing Cloud Vendors
7. Hybrid Cloud

Customer scenarios

End User to Cloud

• End users access
applications and data
running in the cloud
• Users have no idea they

are using the cloud

Enterprise to Cloud to End User

• Applications are hosted in
the public cloud and are
accessed by users and
customers

Enterprise to Cloud

• Cloud applications are
integrated with internal IT
systems

Enterprise to Cloud to Enterprise

• Applications run in the
public cloud and
interoperate with IT
systems in multiple
enterprises

Private Cloud

• The entire cloud is inside
an enterprise’s firewall.
• The cloud infrastructure

can be hosted by the
enterprise or by a third
party.

Changing Cloud Vendors

• An enterprise using cloud
services decides to switch
cloud providers or work
with additional cloud
providers

Hybrid Cloud

• Multiple clouds work
together, coordinated by a
cloud broker that federates
data, applications, user
identity, security and other
details.

Categories of APIs

1. Ordinary programming – Nothing cloud-specific here
2. Deployment – APIs to deploy applications to the cloud.

• This includes traditional packaging mechanisms in addition
to cloud-specific techniques.

3. Cloud services – APIs to invoke storage, queues,
databases, etc.

4. Image and infrastructure management – APIs to find
images, start images, reboot instances, etc.

5. Internal interfaces – APIs for the internal interfaces
between parts of a cloud infrastructure.

Developer roles

• Client application developers – Writes cloud-based
applications for end users (category 3, cloud service APIs)

• Application developers – Writes traditional applications
that use the cloud (categories 1 and 3, ordinary
programming and cloud services APIs)

• Deployers – Package, deploy and maintain applications
that use the cloud (categories 2, 3 and 4: deployment,
cloud services and image / infrastructure APIs)

• Administrators – Work with applications at multiple levels
(categories 2, 3 and 4)

• Cloud providers – Work with internals (category 5)

Developer requirements

• Caching
• Centralized logging
• Database
• Identity management
• Messaging – Both point-to-point and pub-sub
• Raw compute / Job processing
• Session management
• Service discovery
• Storage
• SLAs (machine readable)

Apache
incubator.apache.org/wink

Apache

• Apache Wink is an implementation of JSR-311 / JAX-RS.
• It makes it easy to create REST services as well as clients

that invoke them.

JSR-311/JAX-RS

• As the cloud matures, chances are you’ll need to share
data and services with partners.

• Chances are you’ll need to deploy something with a REST
interface.

• JSR-311, also known as JAX-RS, is a way of deploying
Java code as a REST service.

• The spec makes it easy to deploy an annotated Java class
as a resource accessible via HTTP.

• Annotations in your code define how different methods are
addressed from a URL.

A sample REST service

• Defining the path for the service:
@Path("/calculator/")@Path("/calculator/")
public class RestCalculatorServiceImpl
implements CalculatorService {

• The URL for the service is [baseURL]/calculator/.

A sample REST service

• Defining a method and parameters:
@GET@GET
@Path("/add/{n1}/{n2}/")@Path("/add/{n1}/{n2}/")
public double add(
@PathParam("n1") double n1, @PathParam("n1") double n1,
@PathParam("n2") double n2@PathParam("n2") double n2) {
return n1 + n2;

}
• [baseURL]/calculator/add/37.5/87.2/ returns.

Other annotations

• @Produces("text/html")
• @Consumes("application/atom+xml")

Running the service

JAXRSServerFactoryBean sf = new
JAXRSServerFactoryBean();

sf.setResourceClasses
(RestCalculatorServiceImpl.class);

sf.setResourceProvider
(RestCalculatorServiceImpl.class,
new SingletonResourceProvider(new

RestCalculatorServiceImpl()));
sf.setAddress("http://ec2...sf.setAddress("http://ec2...aws.comaws.com/");/");
sf.create();

Demo

• A quick look at our calculator service
• Written using JSR-311
• Deployed to an Amazon Machine Image running... in the

cloud!
• We should get an integer when we load
http://ec2...com/calculator/add/37.5/87.2/.

The Simple Cloud API

simplecloud.org

The Simple Cloud API

• A joint effort of Zend, GoGrid, IBM, Microsoft, Nirvanix and
Rackspace
• But you can add your own libraries to support other cloud

providers.
• The goal: Make it possible to write portable, interoperable

code that works with multiple cloud vendors.
• There’s an article on the Simple Cloud API in the

developerWorks Open Source zone: bit.ly/1bSkTx

The Simple Cloud API

• Covers three areas:
• File storage (S3, Nirvanix, Azure Blob Storage, Rackspace

Cloud Files)
• Document storage (SimpleDB, Azure Table Storage)
• Simple queues (SQS, Azure Table Storage)

• Uses the Factory and Adapter design patterns
• A configuration file tells the Factory object which adapter to

create.

Vendor-specific APIs

• Listing all the items in a Nirvanix directory:
$auth = array('username' => 'your-username',

'password' => 'your-password',
'appKey' => 'your-appkey');

$nirvanix = new Zend_Service_Nirvanix($auth);
$imfs = $nirvanix->getService('IMFS');
$args = array('folderPath' => '/dougtidwell',

'pageNumber' => 1,
'pageSize' => 5);

$stuff = $imfs->ListFolder($args);

• All of these lines of code are specific to Nirvanix.

Vendor-specific APIs

• Listing all the items in an S3 bucket:
$s3 = new Zend_Service_Amazon_S3

($accessKey, $secretKey);
$stuff = $s3->getObjectsByBucket($bucketName);

• All of these lines of code are specific to S3.

The Simple Cloud API

• Listing all the items in a Nirvanix directory or S3 bucket:
$credentials =

new Zend_Config_Ini($configFile);
$stuff = Zend_Cloud_StorageService_Factory

::getAdapter($credentials)->listItemslistItems();

• These lines of code work with Nirvanix and S3.
• Which adapter is created and which storage is used is

defined in the configuration file.

Dependency injection

• The Simple Cloud API uses dependency injection to do its
magic.

• A sample configuration file:
storage_adapter =
"Zend_Cloud_StorageService_Adapter_Nirvanix"

auth_accesskey = "338ab839-ac72870a"
auth_username = "skippy"
auth_password = "/p@$$w0rd"
remote_directory = "/dougtidwell"

Exciting demonstrations!

•• Prepare to be astoundedPrepare to be astounded by the Simple Cloud API in
action!
• Due to cost constraints, we are unable to provide tissues for

those moved to tears by the demonstration.
• Persons prone to hyperventilation or motion sickness are

advised to look away.
• Be advised the management cannot be

held responsible for your medical expenses.

Issues

• Not all storage services support renaming files.
• You can hack this, but....

• Not all storage services support listing containers.

Issues

• How many messages are in a queue?
• SQS lets you ask, Azure doesn’t.

• Can I peek a message?
• Azure lets you peek, SQS doesn’t.

• What’s the best way to handle this?
• Introspection?
• instanceof?
• XSLT style? system-property
('xsl:is-schema-aware')

Controlling VMs with
Apache

Apache

• A common library for controlling VMs in the cloud
• Create, destroy, reboot and list instances, list and start

images
• incubator.apache.org/libcloud

Apache libcloud

• Find all the VMs I have running in the IBM, Slicehost and Rackspace clouds:

IBM = get_driver(Provider.IBM)
Slicehost = get_driver(Provider.SLICEHOST)
Rackspace = get_driver(Provider.RACKSPACE)
drivers =
[IBM('access key id', 'secret key'),

Slicehost('api key'),
Rackspace('username', 'api key')]

Now do what you like with your running VMs

The libcloud interface

• list_images()
• list_sizes()
• list_locations()
• create_node()
• list_nodes()
• reboot_node()
• Other calls for querying UUIDs, locations, setting

passwords, etc.

Openness in action

• IBM has contributed a Java implementation of libcloud:
• https://svn.apache.org/repos/asf/incubator/

libcloud/sandbox/java/trunk/
• The Java implementation includes the basic framework

plus an adapter for the IBM Smart Business Cloud.
• Other adapters are underway...

Summary / Resources / Next steps

Get Involved!

• Simple Cloud API
• Download the code, build a prototype, submit requirements /

new adapters / bug reports
• simplecloud.org

• libcloud
• incubator.apache.org/libcloud

cloudusecases.org

• The Cloud Computing Use
Cases group is focused on
documenting customer
requirements.

• Covers Security, SLAs,
developer requirements
and cloud basics.

•• Join us!Join us!

Also available in Chinese

Also available in Japanese

• Chinese discussion group
on LinkedIn:
• linkedin.com/groups?

gid= 2919533&
trk=myg_ugrp_ovr

• Japanese discussion
group and translated paper
coming soon!

developerWorks cloud zone

• Dozens of articles on cloud computing, including introductions,
code samples, tutorials and podcasts.

• ibm.com/developerworks/cloud

One more time...

• <hype>
Cloud computing will be the biggest
change to IT since the rise of the Web.

</hype>

• But to make the most of it, we have to keep things open.
• And everybody has to get involved to make that happen.

Thanks!
Doug Tidwell
Cloud Computing Evangelist
dtidwell@us.ibm.com

This is session 7663.

